
Transient Region Coverage in the Propulsion IVHM Technology Experiment

Edward Balaban'
balaban@email.arc. nasa.gov

Adam Sweet'

Anupa Bajwa'

NASA Ames Research Center
Moflett Field CA 94035

I

Abstract

Over the last several years researchers at NASA Glenn and
Ames Research Centers have developed a real-time fault
detection and isolation system for propulsion subsystems of
future space vehicles. The Propulsion IVHM Technologv
Experiment (PITEq, as it is called follows the model-based
diagnostic methodology and employs Livingstone, developed
at NASA Ames, as its reasoning engine. The system has been
t p x t p d nn,flight-like hardware through a series qf nominal and

fault scenarios. These scenarios have been developed using a
highly detailed simulation of the X-34 flight demonstrator
main propulsion system and include realistic failures
involving valves, regulators, microswitches, and sensors. This
paper focuses on one of the recent research and development
efforts under PITEX - to provide more complete transient
region coverage. It describes the development of the transient
monitors, the corresponding modeling methodology, and the
interface software responsible for coordinating the flow of
information between the quantitative monitors and the
qualitative, discrete representatiorin Livings one. -=

1. Introduction

The ability to perform meaningful diagnosis during the
transient period immediately following a command can be
critical for any diagnostic system: a large percentage of
failures can occur in that time period, and the capacity to
quickly detect and isolate a problem can mean the difference
between a mission remediation and mission failure. In the
case of complex physical systems, such as a Main Propulsion
System (M P S) for a reusable launch vehicle, performing such
a diagnosis can be difficult, since there is usually a significant
period of instability - called a transient - following a
command This is the inherent lag between the issuance of a
command and the steady state response of the system, since a
physical system needs time to settle down in its new state.

The previous approach used in PITEX was to wait out that
transient period for a predetermined amount of time, and then
perform a diagnosis. All components of the same type had
same timeout period. This period was set to cover the worst
case scenarios and therefore delayed the diagnostic response
fkom the PITEX system in most cases.

1

William Maul2

Chris Fulton2

b y Chicatelli2

NASA Glenn Research Center at Lewis Field
Cleveland, OH 4431 5

2

The new approach, reported here, is to dynamically determine
transient characteristics that would indicate when the system is
stable and could therefore be diagnosed by the PITEX
reasoning engine. This capability would improve the
diagnostic time in the majority of situations. Two additional
concepts were also pursued as a result of this new approach.

The first was redefining the way physical systems are modeled
in PITEX, in order to reduce the complexity of the Real-Time
Interface (RTI), the software that serves as a conduit between
the monitors and Livingstone. As the diagnostic coverage
increased, the RTI became too complex and system specific.
System information, such as the interactions between
components of different subsystems, had to be explicitly
described in the code. A simplified RTI, freed of such
dependencies, could be adopted for other Livingstone
applications without significant changes.

The second concept was the demonstration that Livingstone
reasoning engine could be applied to any existing constraints

can now be divided into steady-state and transient regions; sets
of relevant features can be monitored in such regions and
constraints applied based on the anticipated response of the
system to a command. This is an important notion because it
enables the PITEX diagnostic system to provide complete
coverage throughout a given time period.

in the transient period. The reagoning world for Livingstme - - - - * --

While the work described in this paper does not yet constitute
a complete solution for transient region issues, it is an
important step in expanding the range of Livingstone
applications to beyond the discrete steady-state domain. This
paper provides an overview of the PITEX system and its
diagnostic domain - the X-34 M P S , then goes into the details
on the previous and current approaches to handling the
transient regions. Three specific test cases are presented that
illustrate the potential capability of the new approach and,
finally, some additional areas that need further investigation
are reviewed.

2. PITEX Overview

This section begins an overview of PITEX with a brief
historical summary of the project. The summary is followed
by an overview of the X-34 flight demonstrator that contains
descriptions of the vehicle, the M P S , and the nominal mission

profile. Next, the diagnostic system is defined in terms of the
software components and the design reference mission.

similar propulsion systems. The X-34 M P S , being a complete,
modern, yet not overly complicated propulsion system,
provided a good development test bed.

2.1 iiistoricai Perspective
2 3 X-34 Main Propulsion System

The development effort under the PITEX project has
improved and enhanced the capabilities of the model-based
diagnostic system that was developed under the NASA IVHM
Technology Experiment for X-Vehicles (NITEX) project.
NITEX was a Pathfinder Experiment that was developed by
Ames Research Center, Glenn Research Center, and Kennedy
Space Center as a real-time fault detection system of the X-34
MPS. The main objectives of PITEX became the continued
enhancement of diagnostic technologies that are relevant to 2"d
Generation Reusable Launch Vehicle (RLV) subsystems and
the assessment of the real-time performance of the developed
diagnostic solution. The program has been funded under the
Space Launch Initiative and, most recently, by the Next
Generation Launch Technology effort.

There have been several development periods that matured the
PITEX software system into its present form today. During
each phase of development, the capabilities of the software
were improved and enhanced by focusing on key expansion
areas, such as the scalability of the system, its handling of
sensor noise and sensor failures, among others. One of the
areas of continuous interest is the improvement of system
response to failures in order to provide accurate and timely
diagnostic information. The work presented here falls under
that area.

2.2 x-34

The X-34 program [I] was a joint effort by industry and
gvvernrrient to design, develop, and test a fully reusable
vehicle that would demonstrate technologies and operating
concepts applicable to future RLV systems. A nominal X-34
mission would include five general phases: pre-flight, captive
carry, powered flight, post-flight, and landing. During pre-
flight, the necessary ground operations are performed, such as
propellant loading. In the next mission phase, captive carry,
the X-34 is carried down the runway and up to the required
launch altitude attached to an L-1011 carrier aircraft. Once
captive carry is completed, the X-34 is released from the L-
1011, its engine is started, and the powered portion of the
flight begins. The vehicle eventually reaches the cruise
altitude of 250,000 feet, where it flies at the speed of Mach 8.
After powered flight is completed, the engine is shut down,
and any excess propellants are dumped overboard. The X-34
then flies as a glider before it lands at a conventional runway.
If a mission is terminated, the X-34 was designed to dump all
propellants and still land safely. More details about X-34
operation can be found in [2].

The X-34 program was suspended in the spring of 2001. The
work on developing an advanced diagnostic system for the
M P S of the X-34 was continued, however, both in the hopes
that the flight program will be revived and because a large
amount of work, including detailed simulations of the M P S ,
had already been completed and deemed applicable to other

The M P S is responsible for providing the thrust that the RLV
needs to meet the requirements of a mission. It is powered by
liquid oxygen (LOX) and RP-1 rocket fuel and provides for
the loading, storing, delivering, and disposing of these
propellants. Within the M P S , there are many subsystems that
carry out these functions: the propellant tanks, the LOX feed,
fill and dump system, the RP-1 feed, fill, and dump system,
the vent system, the pressurization system, and the pneumatic
and purge system. The main engine for the X-34 vehicles was
never completely developed and for development purposes is
treated as a load on the rest of the MPS. For the PITEX
application, the X-34 MPS was scoped to include only the
pneumatic system, the pressurization system, the LOX
subsystem, and the Rp-1 subsystem. Since the purge system
and the reaction control system were not included, this
restricted the number of components modeled and monitored
while still offering unique processing challenges.

To further scope the PITEX demonstration, one specific
segment of an X-34 flight profile was selected. The captive
carry portion was selected due to crew safety considerations of
the piloted L-1011. During this phase of operation, the X-34
is carried to the required launch altitude of 38,000 feet while it
is attached to the underside of an L-1011 aircraft. The engine
is not running, and most of the subsystems of the M P S are in a
quasi-static state. The primary functions for those subsystems
that are operating are the following:
= the vendrelief system prevents over-pressurization of the

tanks and provides propellant conditioning for the LOX;
the LOX and RP-1 feed systems deliver propellant for
engine bleed and thermal conditioning of engine
components in the case of LOX.

The Design Reference Mission [2] for the captive carry phase
is divided into a set of distinct phases. Throughout the first
half hour of captive carry, the M P S is locked-up. During this
period, thresholds are selected for the vendrelief system and
the pressurization system so that they are inactive under
nominal conditions. After this lock-up phase, the vendrelief
system is activated to provide LOX conditioning. For two
hours, this process maintains the nominal temperature and
pressure in the LOX tanks within the predefined thresholds.
Once the two hours are completed, the pressurization system
is enabled. The RP-1 tank is pressurized and the RP-1 bleed
process is performed. This process removes all the air and
purge gases from the propellant fuel feed lines in preparation
of engine ignition. Thereafter, the LOX tanks are pressurized
and the LOX chill-down and bleed process is performed. This
process introduces the feed line and engine components to the
LOX propellant, expelling air and purge gases, as well as
thermally conditioning these components.

2.4 Diagnostic System Overview

3

Virtmd Propubion
System

Figure 0. Diagnostic System Architecture

The purpose of PITEX [3] has been to demonstrate the
successful diagnosis of faults by using a real-time diagnostic
software system. One key achievement has been the
iiq!cmentatitiz= of rn ~chifeCt?L~e %ha? c a qi~i&!y diapnse
faults in a quantitative, continuous domain, such as the M P S ,
using a qualitative, discrete inference engine, such as
Livingstone [4,5].

PITEX is an integrated software package that consists of the
Telemetry Input System, Monitors, Real-Time Interface (RTI),
Livingstone, Results Output System (ROS), and Ground
Processing Unit (GPU). The overall architecture of the
diagnostic system is shown on Figure 0. The virtual
propulsion system simulates the sensor data associated with a
particular mission phase and nominal or failure scenario. -
These data are stored in flat files prior to diagnostic system
testing. The TIS reads in these data sets and stores the
information so as to provide access to the modules in the same
manner and time frame as that experienced by the system
during real-time operations on an actual test or flight. After
the TIS stores the data on-line to simulate a data sweep, the
data are accessed by the Monitor software where pertinent
features of the propulsion system are extracted and the
quantitative information of the system is transformed into
qualitative information. This information is then passed
through the RTI to Livingstone, where system-level
diagnostics are performed using a high-level qualitative model
of the propulsion system. The diagnostic output is collected
by the ROS and sent to the GPU for display.

2.5 Diagnostic Modeling

In model-based diagnosis, there is often a distinction between
the actual model and the diagnostic engine - the part of the
program that carries out the reasoning. The Livingstone
inference engine follows this path and uses a separate model
of the client system, its controller commands, and sensor
observations [4, 51. A model consists of a number of
components, each having a set of n0miMl modes (e.g. “on”

1

and “off‘), and a set of fault modes (e.g. “stuck on”, “stuck
off”). Transitions between modes are also modeled.
Transitions between nominal modes are assumed to be a result
of a controller command and therefore modeled explicitly.
Transitions to fault modes are assumed to be able to occur at
anytime, from any nominal mode, and are, therefore, not
modeled.

In addition to the X-34, several other applications have used
Livingstone as their diagnosis engine: DS-1 Remote Agent
Experiment (JPL/ARC) [6] , X-37 Electro-Mechanical
Actuators [7], an in-situ propellant production testbed (KSC)
[8], a ship’s cooling system (JHU/APL), Space Shuttle Main
Engine (Honeywell), Command & Data Handling System of
the International Space Station (ARC - ongoing) [9]. All of
these used the stem+ stuate discrete modes (such as “on” or
“off’) to model the behavior of the system.

3. Evolution of PITEX Transient Methodology

The original PITEX software was intended to apply diagnostic
reasoning on steady-state observations only and was unable to
infer upon observations that occurred during transient periods.
To ensure that observations provided to the diagnostic
software were steady, latency periods were established based
empirically on simulation data. These latency periods were
event specific; meaning that for each known event there was a
specified period of time in which the system would return to a
steady state. There are several problems with this approach.
The first one is that it is not entirely reliable; any variation in
nominal system response would potentially expose the
diagnostic engine to erroneous inputs. This approach also
requires that all the events encountered by the system are
known in advance, including fault events, along with their
expected settling times. Finally, there are events that require
latency periods on the order of tens of seconds and during
these periods the diagnostic system is essentially blinded.
There are dynamic indicators or signatures available for the
diagnostic system during these latency periods and

,
b

incorporating these into the diagnostic process would be
extremely beneficial. mrtd203t

PievioiiS PITEX eEoits, in order to iiiiiiiniize the size 2nd
impact of these latency regions, focused on modifying signal
processing algorithms used by the Monitors and expanding the
logic policies of the RTI. The Monitors adopted statistical
methodologies in order to provide observations faster and with
a higher degree of confidence. This provided smaller latency
periods and robustness to normal sensor variations, such as
noise. The RTI logic policies were modified to allow
intermediate diagnostic analyses to be performed during the
latency periods by relaxing the constraints only on those
sensors that were not expected to have settled yet. To achieve
this, some of the Livingstone model information, such as the
relationships among the components and sensors of the
system, was replicated in the RTI. This allowed the RTI to
identify and continually monitor the subsystems not impacted
by the current event, as well as to perform preliminary fault
analysis using sensors that respond quickly to the event, rather
than waiting for the entire sensor suite to stabilize.

While these modifications lessened the impact of the latency
periods, there were several problems remaining. By
incorporating subsystem relationships into the RTI, the later
was becoming very domain specific, which would make
adaptation of PITEX work to other systems difficult. In
addition, the approach still required a priori information about
the latency periods, with all the downsides associated with
that. Any unexpected but nominal deviation in the response of
the system to specific events could result in invalid diagnostic
results. Finally, even though these latency periods were
reduced, the monitored system was still diagnostically
inaccessible during them.

In the spring of 2003, PITEX team focused on redesigning the
monitors, the Livingstone model, and the RTI in order to deal
better with the challenges of transient coverage. These new
modules, combined with the base PITEX code, formed the
Transient Framework. In the Transient Framework, instead
of having the RTI un-assigning the sensor observations that
are expected to transition, the constraints that a component
places on those sensor observations within the diagnostic
engine are suspended during the transient period. The sensor
observations associated with the subsystem are thus allowed to
fluctuate. However, components in other subsystems are still
enforcing constrains on their sensor values and may be
diagnosed. Thus, the Transient Framework retains the
advantage of diagnosing subsystems that are expected to be in
a steady state. The corresponding model is now larger, as it
contains the additional transient modes, however the RTI may
now be domain-independent since the domain-specific
subsystem relationships are no longer repeated within it.
.Furthermore, the transient modes may contain specific
constraints on the transient period for different components,
allowing for a diagnosis of the subsystem even while in the
transient phase. The sections below describe this new
approach in more detail.

4. Transient Model
A

f orwardLO2

suo3

Figure 0. Transient Model

The model used in the transient coverage work was created
using Stanley, a Livingstone modeling environment developed
at NASA Ames. For the first iteration, a fragment of the
PITEX X-34 M P S model was used. Its schematic is shown on
Figure 0. The hgment covers the forward liquid oxygen tank
(forwardLO2) and parts of its pressurization and vent systems.
Solenoid Valve #3 (SV03) introduces helium into the tank to
keep the pressure in it constant while the oxygen is be-g
consumed by the engine. The line from SV03 to the tank is
monitored by a pressure sensor MPREIMP. A venvrelief
valve, VROl, releases the excess gaseous oxygen which boils
off during the captive carry MPS lockup. This action is
designed to prevent a potentially catastrophic tank explosion.
A smaller solenoid valve, SV3 1, operates the pneumatic V R O l
with the help of the helium from the pressurization system.
For the reasons of simplicity, in the model used by the
Transient Framework the two valves are combined into a
single component, SV3 1-VROI . This design decision
removed some failure modes that will need to be addressed in
a more comprehensive model, but otherwise left the behavior
ofthe vent system unchanged.

- .

Figure 0 goes into more detail on SV3I-VR01 component.
The schematic on the left shows how this valve was
implemented in Livingstone previously, the one on the right
shows the transient representation. As mentioned earlier, the
valve model now contains the transient “opening” and
“closing” states in addition to the usual “open” and “close”.
These transient states were left largely unconstrained for now;
they only include the constraints stipulating that the transient
period needs to complete successfully. If the transient monitor
reports that the transient is not occurring or is abnormal, it will
conflict with the nominal transient mode and trigger a fault

. .

Figure 0. Base PITEX
diagnosis. Otherwise, the steady-state constraints associated
with the “open“ and “closed” modes will be suspended,
allowing the sensor values to fluctuate during the transition.
The steady-state constraints are reinstated when the transient
is detected to be over.

5. Transient Monitor

The initial task of this monitor during the transient period is to
categorize the system response as “expected”, “absent” or
“anomalous” by monitoring a sensor or group of sensors
which should reflect dynamic behavior whenever a related
command is issued. A follow-up task is to determine when
the transient period has completed by deciding when dynamtc
behavior in the same set of sensors has sufficiently subsided.

For the purposes of this first study, one of the three redundant
pressure sensors on the vent line, MpRE202P, was selected to
monitor transient behavior for open commands to VRO1.
Monitoring of the transient behavior for the open command
was selected because the sensor behavior is very distinct
during that time.

When VROl is commanded open, MPRE202P senses a
pressure drop, which then settles out. At the time of the
command, the transient monitor calculates the average value
of MPRE202P over the data frame when the command was
issued. A 0.5 second delay is then introduced. This delay was
empirically derived based on the observed time required to see
a significant change in MPRE202P. At the end of the delay,
an average of the current data frame is again calculated and
compared to the previous value. If the delta between the
values surpasses a threshold, then the RTI is notified that the
system is responding. Otherwise, the RTI is told that the
transient has completed.

If the system is responding, the monitor continues to calculate
averages over successive data frames and compares the
current average with a value calculated, nominally, 250
milliseconds earlier. These two values are at the endpoints of
a moving window of data. The transient is considered to be
over when the absolute value of this new delta falls below a

and Transient Valve Models
steady state value. At this time the RTI is notified that steady
state has been achieved.

While this algorithm is relatively simple, the concept could be
extended to use multiple sensors to detect both “system
responding” and “transient over” events. In addition,
detection of different features, such as a drift or spike, could

the sensors selected for the task. The extension of the
algorithm would need to be balanced against the real-time
requirements of the system.

ha - v m a A - C n- ; - A ; m t n r nC “rr+nm -nc-c\ncp *Gth& -m<r 01 -11 nf “C cw-u cw LIU lLLCllClYLVl V I a,*.”&- “UyVYY’ ..I- uy, “L - ”*

6. Transient Real-Time Interface

The new Transient RTI has two main modes of operation -
steady state and commanded transition. In the steady state, the
RTI buffers incoming observations and checks whether any of
them are for components that already have previous
observations stored. If that is the case, the new observation
replaces the old one. This cycle continues until a command
arrives.

When that happens, the commanded transition mode is entered
and a software timer is set. In the case of the Transient RTI,
this timer serves as a backup mechanism in case the transient
monitor fails to provide an indication that the system has
reached a steady state. Livingstone is then informed of the
command, which puts the commanded component into a less
constrained, intermediate state (for a valve that would be
“closing” or “opening”). Next, the observations are collected
as they were before the command, until the transient monitor
indicates that the transient period has indeed begun. That
indication usually comes about 0.5 seconds after the
command. The RTI then issues a Livingstone diagnostic
request to check that the component has entered the
intermediate, transient mode correctly. The observations are
continued to be buffered until the transient period ends due to
one of the following reasons:

Transient over
This is the nominal way to end a transient period. The
transient monitor detects that a sensor has reached a steady
state and the transient period has most likely ended.

. .

Therefore, it sends a “transient over” observation. Once the
RTI receives this observation, it commands the component to
assume its final state, uploads all the observations from the
buffer to Livingstone, and then requests a diagnosis.

Abnormal transient
When the transient detector notices a problem with one of the
transient conditions monitored, such as a sudden, unexpected
rise or fall in value, it issues an “abnormal transient”
observation. That prompts the RTI to end the transient period
early by sending the appropriate command to Livingstone. It
then uploads all the accumulated observations and requests a
diagnosis.

Timeout
If the transient monitor fails to send either a “transient over”
or an ‘‘abnormal transient” message within a predetermined
period of time, the timer task issues a timeout notice, and the
RTI ends the transient period in a manner similar to the
“Transient Over” and “Abnormal Transient” cases.

7. Relevant Execution Scenarios

This section summarizes the cases where using the adopted
transient approach can prove beneficial:

System does not respond to a command or an event
In this case the transient detector does not notice any change
in the behavior of the system after the mandatory 0.5 second
wait, so it informs the RTI that the transient is complete. The
RTI can then proceed to send Livingstone all the observations
received up to that point and request a diagnosis. This request
happens much sooner than if it were to wait for the predefined
timeout period to elapse.

An anomaly occurs during the transientperiod
The transient period starts out nominally and the RTI is
informed to that effect. However, at some point prior to
steady state, the monitors detect an anomaly in sensor
telemetry. The observed anomaly could be as simple as the
absolute pressures exceeding a predefined or controlled
threshold value. The monitors then issue a spontaneous
observation to that effect and Livingstone can provide
diagnostic analysis even during the transient regions, thereby
eliminating, or at least reducing, the blind regions of the
diagnostic system.

The transient period ends successjidly, but sooner than usual.
The transient period ends successfully, but sooner than

anticipated, and this is detected by the transient monitor. The
RTI sends observations accumulated up to that point to
Livingstone and the latter then requests a diagnosis without
waiting for the latency period to end. This eliminates the
often unreliable dependency on a priory information about the
length of transient periods.

8. Testing

The test cases, presented in Table 1 are based on the existing
NITENPITEX fault scenarios adapted for testing of the
Transient Framework. They were selected to correspond to
the execution scenarios described in the previous section. No
changes to the original fault scenarios were required, except
for the second test case, where NITEXPITEX did not have a
direct equivalent. To produce it, a transient anomaly was
injected at 6186 seconds into the execution of the nominal
scenario.

9. Results and Discussion

It is, of course, difficult to compare the results obtained for the
Transient Framework to the previous PITEX results, even
given the similarity of the scenarios. The model used in the
Transient Framework is significantly smaller than the latest
PITEX model used. This theoretically reduces the search time
needed by Livingstone. PITEX was tested on 25 scenarios
compared to Transient Framework’s three. Still, a side-by-
side look at the two result sets does present a promising trend
for the transient approach:

Test Case 1 - Nominal:
Two criteria were considered to compare performance in this
case. The first one is absence of false positive errors in
diagnosis. If diagnosis is performed prematurely, before the
critical observations have settled, Livingstone may detect
inconsistencies with the expected state and report a fault (or
faults). Both the base PITEX system and the Transient
Framework satisfied this criterion. The second criterion is
how soon the diagnostic system was able to confirm the
nominal state after a command. Only the open commands for
SV31NROl were reviewed, since these are the commands
currently monitored by the transient detector. There are 7
such commands issued in the 9000 seconds of the nominal
scenario. The base version of PITEX required an average of
3.13 seconds after the command was issued to confirm that it
was successful (the minimum was 3.08 seconds, maximum -
3.17 seconds). For the Transient Framework the numbers
were 2.51 seconds average diagnostic time, 2.10 minimum,

Transient Execution Scenario

Test Case 1. The transient period ends
successfully, but sooner than anticij ated

Test Case 2. An anomaly occurs dlri
a transient period

- -
introduced afier a command at 6 186.0 seconds

Test Case 3. System does not elief LOX tank vent relief servo valve SV31

NITEXA’ITEX Description

Captive carry portion of an X-34 flight

Transient anomalv

I to a command or an event valve stuck closed I closed at 5 167.4 seconds I
c;

and 3.1 7 seconds maximum.

This demonstrates the ability of the diagnostic system to
dy-nmicd:y ionchide when the system had steady state. The
PITEX solution at 3+ seconds only involves rapid responding
observations, microswitches, with the remaining observations
being incorporated much later. This is due to the a priori
uncertainty required by the PITEX system to ensure system
stability. The Transient Framework diagnosis involves all
available observations immediately because it has determined
that the system has achieved steadiness directly.

Test Case 2 - Transient Anomaly:
This scenario did not have an exact equivalent in the
NITEXPITEX set and thus could not be directly compared to
the previous results. However, the diagnostic response time
obtained was less or equal to the smallest time measurable by
PITEX - 0.08 seconds - which is as good as can be expected.
The test case demonstrated the enhanced capability of the
diagnostic system to accept and process dynamic features and
apply those features to dynamic constraints during the
transient period. Previous PITEX models would have
completely ignored this type of information and would have
been incapable of providing any diagnostic reasoning during
ihe transient periods.

Test Case 3 - LOXtank vent relief valve stuck closed:
This was the easiest scenario to compare against the previous
results since it remained unchanged and did not contain an
injected fault. The base PITEX code took 3.08 seconds to
detect and diagnose the fault; the Transient Framework code
needed only 0.52 seconds. In this test case, the failure is a
non-event; the system was commanded to perform, but there
was no response. Because the current Transient Framework
constantly evaluates the system after 0.5 seconds to determine
if it has achieved steadiness, the diagnostic inference engine is
able to evaluate the entire suite of observations sooner than the
earlier PITEX version, which based its diagnosis at 3.08
seconds on only a partial set of observations.

While the above test scenarios cover a significant portion of
situations occurring during transient periods, in order to
provide a more complete coverage for physical systems such
as M P S , failure scenarios which are rarer, yet frequently more
difficult to diagnose must be considered. While extending the
software to accommodate such cases was outside the scope of
this effort, some preliminary discussions to identify the
problems and possible solutions have already been held.
These cases include the handling of rapid commanding
sequences, overlapping command, and spontaneous failures.

Rapid Commanding
This is the situation when a command for the same component
comes before a steady state for the previous command is
achieved. For instance, a valve is still in the transient period
for the open command, when a close command comes in. One
possible way to address this problem is to create a model
where transitions between intermediate states (such as
“opening” and “closing”) are allowed. This way the model
can be switched directly from one transient period into

another, without having to send potentially inconsistent
observations to Livingstone in the meantime.

Overlappizg Carnrn~ds
In this case a command to one subsystem is issued while the

transient period initiated by a command to another subsystem
is still in progress. The Transient Framework may be well
suited for this type of a situation since most of the constraints
pertaining to the commanded component have already
disabled for the transient timeout and thus should have no
influence on a different subsystem.

Spontaneous failures
Sometimes failures in a physical system do not happen as a
result of commanded transitions, but occur in between them,
during what ordinarily would be tranquil periods. For
example, a pipe could burst, a sensor can fail, or valve can
spuriously transition from being open to being closed. In this
case, only the observations are seen by the Monitors and RTI
and without an associated cause to the observation changes (a
particular commanded event), it can be difficult to determine
how long to wait for system to reach a steady state. In the
majority of situations, spontaneous observations can be treated
the same way as a command when performing diagnosis and
are expected to be handled well by the current design of the
Transient Framework. A difficulty could arise if a command
for the same subsystem is received during the transient
timeout for the spontaneous observation. The system response
to the command could mask or be masked by the spontaneous
failure. Monitor observations may become inconsistent and
result in a false positive fault diagnosis. Out of the problems
described in this section, this is likely the most complex one to
resolve.

From a broader perspective, several areas have been identified -
as promising for further research. For instance, the transient
monitors need to evolve to provide more comprehensive and
precise diagnostic coverage by combining inputs from several
different sensors, such as pressure, temperature, and
microswitch readings. Care, however, should be exercised as
to not shift too much of the diagnostic responsibilities into the
monitors by explicitly hardcoding some of the algorithms
there and thus negating certain benefits of the model-based
diagnostic approach.

Another research direction that is worth investigating is
integration of the Transient Framework with BEAM, a signal
pattern recognition system developed at JPL. Operating
alongside with PITEX monitors, BEAM can assist with
accurately identifying the boundaries and anomalies of
transient periods. In the past BEAM has successfully been
combined with PITEX to disambiguate diagnosis on a fault
scenario [IO].

Finally, scalability of the Transient Framework must be
verified by applying it to larger, multiple subsystem models,
such as the PITEX model of the entire X-34 M P S .

10. Concluding Remarks

7

The transient modeling approach, where intermediate, loosely
constrained modes for commanded components are created, &
a promising way to provide diagnostic coverage for the
pericds of instability that nsi!ly fs!!o’~’ a coix-anc! in a
physical system. A diagnostic system for X-34 flight
demonstrator MPS created using this methodology was both
simpler in design than the earlier versions and provided faster
diagnostic times.

[IO] H. Park, H. Cannon et al, “Hybrid Diagnostic System: Beacon-
based Exception Analysis for Multimissions - Livingstone
Integration,” sociely for Machinety Failure Prevention Technology
Conference, April 2004.

Three test cases were developed and used to demonstrate the
potential of this approach over the previous PITEX software
design. In each case the transient modeling approach provided
earlier and more comprehensive diagnostic solution. The new
approach enables reasoning on features occurring within the
transient period and is more robust, requiring no assumptions
concerning system response durations.

While there are several research topics remaining to be
investigated to ensure that this approach is viable, the
expectation of the Transient Framework is very positive.

Acknow Iedgements

The authors would like to acknowledge the contributions of all
c?f the c&er PITEX ~d ?.?TEX teiiiii members at the h-ASA
Kennedy Space Center, the NASA Ames Research Center,
and the NASA Glenn Research Center. Their contributions
were instrumental in the successful completion of this work.
The authors would also like to acknowledge the support and
guidance of the NGLT IVHM Project Office managed by the
NASA Ames Research Center.

Bibliography

[I] P. K. Sgarlata and B. A. Winters, “X-34 Propulsion System
Design,” 33rd AIAA/ASUE/SAE/ASEE Joint Propulsion Conference
and Exhibit, July 6-9, 1997.
[2] R. H. Brown, Jr. and F. J. Darrow, Jr., “X-34 Main Propulsion
System Design and Operation,” 3 k AIAA/ASME/SAE/ASEE Joint
Propulsion Conference &Exhibit, July 13-15, 1998.
[3] C. Meyer, H. Cannon, E. Balaban, C. Fulton, W. Maul, A.
Chicatelli, A. Bajwa, E. Wong, “Propulsion IVHM Technology
Experiment Overview”, 2003 IEEE Aerospace Conference
Proceedings
[4] J. Kurien and P. Nayak, “Back to the Future for Consistency-
based Trajectory Tracking,” Proceedings of 7th National Conference
on Artificial Intelligence, 2000.
[5] A. Bajwa and A. Sweet, “The Livingstone Model of a Main
Propulsion System,” 2003 IEEE Aerospace Conference Proceedings
[6] D. Bernard et al, “Spacecraft Autonomy Flight Experience: The

DS-1 Remote Agent Experiment,” AlAA-99-4512,1999.
[7] M. Schwabacher, J. Samuels, and L. Brownston, “The
NASA Integrated Vehicle Health Management Technology
Experiment for X-37,” SPLE AeroSense, 2002.
[8] C. Goodnch and J. Kurien, “Continuous Measurements and
Quantitative Constraints - Challenges Problems for Discrete
Modeling Techniques,” I-SAIRAS Proceedings, 2001.
[9] P. Robinson, M. Shirley, D. Fletcher,R. Alena, D. Duncavage, C.
Lee, “Applying Model-Based Reasoning to the FDIR of the
Command & Data Handling Subsystem of the International Space
Station, iSAIRAS 03 2003

